3.74 \(\int \sqrt{a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx\)

Optimal. Leaf size=181 \[ \frac{\left (3 a^2-6 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{3/2} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac{\sin ^3(e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 f}-\frac{(3 a-b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 a f} \]

[Out]

((3*a^2 - 6*a*b - b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(3/2)*f) + (Sqrt[b]
*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - ((3*a - b)*Cos[e + f*x]*Sin[e + f*x]*Sqrt
[a + b + b*Tan[e + f*x]^2])/(8*a*f) - (Cos[e + f*x]*Sin[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*f)

________________________________________________________________________________________

Rubi [A]  time = 0.22117, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {4132, 467, 578, 523, 217, 206, 377, 203} \[ \frac{\left (3 a^2-6 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 a^{3/2} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac{\sin ^3(e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{4 f}-\frac{(3 a-b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 a f} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4,x]

[Out]

((3*a^2 - 6*a*b - b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*a^(3/2)*f) + (Sqrt[b]
*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - ((3*a - b)*Cos[e + f*x]*Sin[e + f*x]*Sqrt
[a + b + b*Tan[e + f*x]^2])/(8*a*f) - (Cos[e + f*x]*Sin[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*f)

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 578

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c -
 a*d)*(p + 1)), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4 \sqrt{a+b+b x^2}}{\left (1+x^2\right )^3} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}+\frac{\operatorname{Subst}\left (\int \frac{x^2 \left (3 (a+b)+4 b x^2\right )}{\left (1+x^2\right )^2 \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{4 f}\\ &=-\frac{(3 a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a f}-\frac{\cos (e+f x) \sin ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}+\frac{\operatorname{Subst}\left (\int \frac{(3 a-b) (a+b)+8 a b x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a f}\\ &=-\frac{(3 a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a f}-\frac{\cos (e+f x) \sin ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac{\left (3 a^2-6 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 a f}\\ &=-\frac{(3 a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a f}-\frac{\cos (e+f x) \sin ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{\left (3 a^2-6 a b-b^2\right ) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a f}\\ &=\frac{\left (3 a^2-6 a b-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 a^{3/2} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac{(3 a-b) \cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 a f}-\frac{\cos (e+f x) \sin ^3(e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{4 f}\\ \end{align*}

Mathematica [F]  time = 5.42471, size = 0, normalized size = 0. \[ \int \sqrt{a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4,x]

[Out]

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4, x]

________________________________________________________________________________________

Maple [C]  time = 0.411, size = 1940, normalized size = 10.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/8/f/a/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*(-2*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+
3*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(
a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f
*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b
-b^2)/(a+b)^2)^(1/2))*a^2*sin(f*x+e)+2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(
f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+c
os(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*
b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b*sin(f*x+e)-2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/
2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a
^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2*sin(f*x+e)-1
6*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(
a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(
f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^
(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b*sin(f*x+e)-6*2^(1/2)*(1/(a+b)*(I*cos(f*x+
e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(
1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+
a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I
*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2*sin(f*x+e)+12*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)
*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos
(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e)
,-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))
^(1/2))*a*b*sin(f*x+e)+2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+c
os(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1
/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)
*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2*sin(f*x+e)+2*cos(
f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+5*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^
2-3*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-5*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^
(1/2)*a^2+3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+5*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(
a+b))^(1/2)*a*b-cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2-5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/
2)*a*b+((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)*cos(f*x+e)*sin(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1
/2)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [A]  time = 3.47421, size = 3776, normalized size = 20.86 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/64*(16*a^2*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(
f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f
*x + e)^4) + (3*a^2 - 6*a*b - b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32
*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^
3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^
3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(2*a^2*cos(f*x + e)^3 - (5*a^2 - a*b)*cos(f*x + e))*sqrt((a*co
s(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^2*f), 1/64*(32*a^2*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x +
e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(
f*x + e))) + (3*a^2 - 6*a*b - b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32
*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^
3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^
3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(2*a^2*cos(f*x + e)^3 - (5*a^2 - a*b)*cos(f*x + e))*sqrt((a*co
s(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^2*f), 1/32*(8*a^2*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x
+ e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x
+ e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - (3*a^2 - 6*a*b - b^2)*sqrt(a)*arctan(1/4*(
8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x
 + e))) + 4*(2*a^2*cos(f*x + e)^3 - (5*a^2 - a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*si
n(f*x + e))/(a^2*f), 1/32*(16*a^2*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sq
rt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) - (3*a^2 - 6*a*b - b^2)*s
qrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqr
t(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(
f*x + e)^2)*sin(f*x + e))) + 4*(2*a^2*cos(f*x + e)^3 - (5*a^2 - a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)
/cos(f*x + e)^2)*sin(f*x + e))/(a^2*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**4*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^4, x)